China supplier Steel Metallurgical Rolling Stick Material Rolling Machine SWC Type Integral Fork Cross Shaft Universal Couplings

Product Description

 

Product Description

Steel Metallurgical Rolling Stick Material Rolling Machine SWC Type Integral Fork Cross Shaft Universal Couplings

Product Name

The magnetic stirrer is a stirrer that is mounted on the bottom of a container and is driven by magnetic force. It adopts a fully closed, non-leaking, non-fouling mixing method. Because it is magnetically driven, it is a non-contact, torque-free transmission shaft. It uses the static seal of the insulating sleeve isolation method to replace the dynamic seal of the drive shaft and completely solves the leakage problem that can not be solved by the mechanical seal. The equipment is mainly used in the dissolution, mixing and batching in pharmaceuticals, foods and other industries.  

The magnetic stirrer is an equipment designed primarily to confirm to GMP standards in the pharmaceutical, biotechnology, and food industries, which is featured by small size, reasonable structure, excellent performance and reliable use. It is a stirring device applicable to all kinds of stainless steel reaction tanks and liquid tanks. It is mainly composed of internal magnetic steel, external magnetic steel, isolation sleeve and transmission motor.sanitary magnetic stirrer contact material parts are all made of stainless steel 316L/304, and it is through the permanent magnet coupling to drive the stirring shaft to work. It uses the static seal of the insulating sleeve isolation method to replace the dynamic seal of the drive shaft which completely solves various unavoidable leakage problems of mechanical seal.The stirring impeller of the magnetic stirrer rotates to generate a vortex, and the dissolvable powder or liquid material is sucked into the vortex and rapidly absorbed into the stirring impeller. The centrifugal force of impeller rotation impacts the material from the outer diameter of the impeller to the tank wall in the form of radiation. The material rises and circulates with the collision force, and is then sucked back to the suction end of the impeller. The impeller’s thrust causes the material to move and stir continuously, and is homogenized, mixed, dissolved and dispersed, and finally forms a stable and delicate product.

* The above information is for reference only and can be customized according to customer requirements.
* This equipment can be customized according to the nature of raw materials to meet the needs of the 
process, such as greater viscosity, homogenization and other requirements.  

 Thickness WIDTH WEIGHT pile pieces cofficient Type of coating
27Q100 0.27 970 3392 0.96 1.90 97 T5
4066 0.94 1.90 97 T5
4184 0.95 1.90 97 T5
4822 0.94 1.90 97 T5
4280 0.96 1.90 97 T5
3188 0.94 1.90 97 T5
4702 0.95 1.90 97 T5
4978 0.95 1.90 97 T5

 

 

About us

HangZhou Honglu Trade Co. , Ltd. is a professional trading company engaged in sales of stainless steel strip, stainless steel plate, electronic iron core and aluminum veneer. The main products are nickel base alloy, titanium base alloy, zirconium base alloy, copper and copper alloy, stainless steel, Die Steel, tool steel, alloy steel, special steel and so on

Company Philosophy:                                Integrity-based, quality first

Corporate Culture:

Customer Thinking–From customer, Serve customer,Achieve customer
Enterprising Thinking–Professional, Sincere dedication, Exceed expectation

 

 

FAQ

Q: Are you Manufacturer or Trading company?
A1: We are both manufacturer in Ningo city, ZHangZhoug Province, China.we have  professional processing mill with 10 years’ experience.
Q: What’s your main products?
A2: Our main products is including Stainless Steel Strip grade in 201,301,304,304L,316L, 430, 410L.
Q:Do you provide samples ?
A3: Yes, we could offer the sample for free charge but the cost of freight is by receiver, normally.

Why choose us?

1.   With 10 years’ experience in Stainless Steel strip manufacturing.
2.   Competitive Price and Best Services.
3.   Work with many famous brands,such as Tisco,Baosteel.
4.   Strong production capacity.
5.   Excellent exprience of after-sale service.

How to order
Please inform us the following information
1.Grade,Surface,Thickness,Size,Tolerance,Special request
2.Amount
3.Price Term
4.Leave your contact
       If you are interested in our products, please feel free to contact me any time! Welcome to hear from your inquiry!

Contact us:

Julia

 

 

shaft coupling

Understanding the Torque and Misalignment Capabilities of Shaft Couplings

Shaft couplings play a critical role in transmitting torque and accommodating misalignment between rotating shafts in mechanical power transmission systems. Understanding their torque and misalignment capabilities is essential for selecting the right coupling for a specific application. Here’s an overview:

Torque Transmission:

The torque capacity of a shaft coupling refers to its ability to transmit rotational force from one shaft to another. It is typically specified in torque units, such as Nm (Newton-meters) or lb-ft (pound-feet). The coupling’s torque capacity depends on its design, size, and material.

When selecting a coupling, it’s crucial to ensure that its torque capacity meets or exceeds the torque requirements of the application. Overloading a coupling beyond its torque capacity can lead to premature failure or damage to the coupling and connected equipment.

Misalignment Compensation:

Shaft misalignment can occur due to various factors, including thermal expansion, manufacturing tolerances, or foundation settling. Misalignment puts additional stress on the coupling and connected components, potentially leading to increased wear and reduced efficiency.

Shaft couplings are designed to compensate for different types of misalignment:

  • Angular Misalignment: Occurs when the shafts are not parallel and have an angle between them.
  • Parallel Misalignment: Occurs when the shafts are not collinear, resulting in axial displacement.
  • Radial Misalignment: Occurs when the shafts have lateral displacement but remain parallel.

The coupling’s misalignment capabilities are specified in terms of angular and axial misalignment values, usually in degrees or millimeters. Different coupling designs can accommodate varying degrees of misalignment, and the choice depends on the specific application and operating conditions.

Flexible Couplings:

Flexible couplings, such as elastomeric or jaw couplings, offer good misalignment compensation. They can handle a combination of angular, parallel, and axial misalignments. However, their torque capacity may be limited compared to rigid couplings.

Rigid Couplings:

Rigid couplings, such as clamp or sleeve couplings, have high torque transmission capabilities but offer minimal misalignment compensation. They are best suited for applications where shafts are well-aligned and precise torque transmission is critical.

Torsional Stiffness:

Another factor to consider is the coupling’s torsional stiffness, which determines how much torsional deflection or twist occurs under load. Some applications, like precision systems, may require couplings with high torsional stiffness to maintain accurate positioning and avoid torsional backlash.

By understanding the torque and misalignment capabilities of shaft couplings, engineers can make informed decisions when selecting a coupling to ensure efficient power transmission and reliable performance in their mechanical systems.

“`shaft coupling

Do Shaft Couplings Require Regular Maintenance, and if so, What Does it Involve?

Yes, shaft couplings do require regular maintenance to ensure their optimal performance, extend their service life, and prevent unexpected failures. The maintenance frequency may vary based on factors such as the coupling type, application, operating conditions, and the manufacturer’s recommendations. Here’s what regular maintenance for shaft couplings typically involves:

1. Visual Inspection:

Regularly inspect the coupling for signs of wear, damage, or misalignment. Check for cracks, corrosion, and worn-out elastomeric elements (if applicable). Look for any abnormal movement or rubbing between the coupling components during operation.

2. Lubrication:

If the shaft coupling requires lubrication, follow the manufacturer’s guidelines for the appropriate lubricant type and frequency. Lubrication helps reduce friction, wear, and noise in the coupling.

3. Alignment Check:

Monitor shaft alignment periodically. Misalignment can lead to premature coupling failure and damage to connected equipment. Make adjustments as needed to keep the shafts properly aligned.

4. Torque Check:

For bolted couplings, periodically check the torque on the bolts to ensure they remain securely fastened. Loose bolts can lead to misalignment and reduce coupling performance.

5. Replace Worn Components:

If any coupling components show signs of wear or damage beyond acceptable limits, replace them promptly with genuine replacement parts from the manufacturer.

6. Environmental Considerations:

In harsh environments with exposure to chemicals, moisture, or extreme temperatures, take additional measures to protect the coupling, such as applying corrosion-resistant coatings or using special materials.

7. Monitoring Coupling Performance:

Implement a monitoring system to track coupling performance and detect any changes or abnormalities early on. This could include temperature monitoring, vibration analysis, or other condition monitoring techniques.

8. Professional Inspection:

Periodically have the coupling and connected machinery inspected by qualified professionals to identify any potential issues that may not be apparent during regular inspections.

By adhering to a regular maintenance schedule and taking proactive measures to address potential issues, you can ensure that your shaft couplings operate reliably and efficiently throughout their service life, minimizing downtime and improving overall system performance.

“`shaft coupling

Diagnosing and Fixing Common Issues with Shaft Couplings

Regular inspection and maintenance of shaft couplings are essential to detect and address common issues that may arise during operation. Here are steps to diagnose and fix some common coupling problems:

1. Abnormal Noise or Vibration:

If you notice unusual noise or excessive vibration during equipment operation, it may indicate misalignment, wear, or damage in the coupling. Check for any visible signs of damage, such as cracks or deformations, and inspect the coupling for proper alignment.

Diagnosis:

Use a vibration analysis tool to measure the vibration levels and identify the frequency of the abnormal vibrations. This can help pinpoint the source of the problem.

Fix:

If misalignment is the cause, adjust the coupling to achieve proper alignment between the shafts. Replace any damaged or worn coupling components, such as spiders or elastomeric inserts, as needed.

2. Excessive Heat:

Feeling excessive heat on the coupling during operation can indicate friction, improper lubrication, or overload conditions.

Diagnosis:

Inspect the coupling and surrounding components for signs of rubbing, lack of lubrication, or overloading.

Fix:

Ensure proper lubrication of the coupling, and check for any interference between the coupling and adjacent parts. Address any overloading issues by adjusting the equipment load or using a coupling with a higher torque capacity.

3. Shaft Movement:

If you observe axial or radial movement in the connected shafts, it may indicate wear or improper installation of the coupling.

Diagnosis:

Check the coupling’s set screws, keyways, or other fastening methods to ensure they are secure and not causing the shaft movement.

Fix:

If the coupling is worn or damaged, replace it with a new one. Ensure proper installation and use appropriate fastening methods to secure the coupling to the shafts.

4. Sheared Shear Pin:

In shear pin couplings, a sheared shear pin indicates overloading or shock loads that exceeded the coupling’s torque capacity.

Diagnosis:

Inspect the shear pin for damage or breakage.

Fix:

Replace the sheared shear pin with a new one of the correct specifications. Address any overloading issues or adjust the equipment to prevent future shearing.

5. Coupling Wear:

Regular wear is normal for couplings, but excessive wear may lead to decreased performance and increased misalignment.

Diagnosis:

Inspect the coupling components for signs of wear, such as worn elastomeric elements or damaged teeth.

Fix:

Replace the worn or damaged components with new ones of the appropriate specifications.

Remember, regular maintenance and periodic inspection are key to diagnosing issues early and preventing severe problems. Always follow the manufacturer’s recommendations for maintenance and replacement schedules to ensure the proper functioning and longevity of the shaft coupling.

“`
China supplier Steel Metallurgical Rolling Stick Material Rolling Machine SWC Type Integral Fork Cross Shaft Universal Couplings  China supplier Steel Metallurgical Rolling Stick Material Rolling Machine SWC Type Integral Fork Cross Shaft Universal Couplings
editor by CX 2023-10-20